All Problems

Radioactivity

Problem 6.232

A Bi210 radionuclide decays via the chain \[ \mathrm{Bi}^{210} \underset{\lambda_{1}}{\longrightarrow} \mathrm{Po}^{210} \overrightarrow{\lambda_{2}} \mathrm{~Pb}^{206} \text { (stable), } \] where the decay constants are \(\lambda_{1}=1.60 \cdot 10^{-6} \mathrm{~s}^{-1}, \lambda_{2}=\) \(=5.80 \cdot 10^{-8} \mathrm{~s}^{-1} .\) Calculate alpha- and beta-activities of the \(\mathrm{Bi}^{210}\) preparation of mass \(1.00 \mathrm{mg}\) a month after its manufacture.

Reveal Answer
 6.232. N˙β=N0λ1exp(λ1t)=0.721011 part./s, N˙α==N0(eλ1teλ2t)λˉ1λ2/(λ^2λ1)=1.461011 part./s. Here N0 is the initial number of Bi210 nuclei. \begin{aligned} &\text { 6.232. } \dot{N}_{\beta}=N_{0} \lambda_{1} \quad \exp \quad\left(-\lambda_{1} t\right)=0.72 \cdot 10^{11} \quad \text { part./s, } \quad \dot{N}_{\alpha}=\\ &=N_{0}\left(\mathrm{e}^{-\lambda_{1} t}-\mathrm{e}^{-\lambda_{2} t}\right) \bar{\lambda}_{1} \lambda_{2} /\left(\hat{\lambda}_{2}-\lambda_{1}\right)=1.46 \cdot 10^{11} \text { part./s. Here } N_{0}\\ &\text { is the initial number of } \mathrm{Bi}^{210} \text { nuclei. } \end{aligned}