All Problems

Constant Electric Field in a Vacuum

Problem 3.9

A thin wire ring of radius \(r\) carries a charge \(q .\) Find the magnitude of the electric field strength on the axis of the ring as a function of distance \(l\) from its centre. Investigate the obtained function at \(l \gg r\). Find the maximum strength magnitude and the corresponding distance \(l\). Draw the approximate plot of the function \(E(l)\).

Reveal Answer
 3.9. E=ql4πε0(r2+l2)3/2. For lr the strength Eq4πε0l2, as  in the case of a point charge. Emax=q63πε0r2 for l=r/2 . \begin{aligned} &\text { 3.9. } E=\frac{q l}{4 \pi \varepsilon_{0}\left(r^{2}+l^{2}\right)^{3 / 2}} . \text { For } l \gg r \text { the strength } E \approx \frac{q}{4 \pi \varepsilon_{0} l^{2}}, \text { as }\\ &\text { in the case of a point charge. } E_{\max }=\frac{q}{6 \sqrt{\overline{3} \pi \varepsilon_{0} r^{2}}} \text { for } l=r / \sqrt{2} \text { . } \end{aligned}