All Problems

Electromagnetic Induction. Maxwells Equations

Problem 3.367

In an inertial reference frame KK there is only a uniform electric field E=8kV/mE=8 \mathrm{kV} / \mathrm{m} in strength. Find the modulus and direction (a) of the vector E\mathbf{E}^{\prime}, (b) of the vector B\mathbf{B}^{\prime} in the inertial reference frame KK^{\prime} moving with a constant velocity v\mathbf{v} relative to the frame KK at an angle α=45\alpha=45^{\circ} to the vector E\mathbf{E}. The velocity of the frame KK^{\prime} is equal to a β=0.60\beta=0.60 fraction of the velocity of light.

Reveal Answer
 3.367. (a) E=E1β2cos2α1β2=9kV/m;tanα=tanα1.β2 ,  whence α51; (b) B=βEsinαc1β2=14μT . \begin{aligned} &\text { 3.367. (a) } E^{\prime}=E \sqrt{\frac{1-\beta^{2} \cos ^{2} \alpha}{1-\beta^{2}}}=9 \mathrm{kV} / \mathrm{m} ; \quad \tan \alpha^{\prime}=\frac{\tan \alpha}{\sqrt{1-. \beta^{2}}} \text { , }\\ &\text { whence } \alpha \approx 51^{\circ} ; \quad \text { (b) } B^{\prime}=\frac{\beta E \sin \alpha}{c \sqrt{1-\beta^{2}}}=14 \mu \mathrm{T} \text { . } \end{aligned}