All Problems

The Fundamental Equation of Dynamics

Problem 1.65

A plank of mass m1m_{1} with a bar of mass m2m_{2} placed on it lies on a smooth horizontal plane. A horizontal force growing with time tt as F=F= at (a(a is constant) is applied to the bar. Find how the accelerations of the plank w1w_{1} and of the bar w2w_{2} depend on t,t, if the coefficient of friction between the plank and the bar is equal to k.k . Draw the approximate plots of these dependences.

Reveal Answer
 1.65. When tt0, the accelerations w1=w2=at/(m1+m2); when tt0w1=kgm2/m1,w2=(atkm2g)/m2. Here t0==kgm2(m1+m2)/am . See Fig. 4. \begin{aligned} &\text { 1.65. When } t \leqslant t_{0}, \text { the accelerations } w_{1}=w_{2}=a t /\left(m_{1}+m_{2}\right) ;\\ &\text { when } t \geqslant t_{0} \quad w_{1}=\mathrm{kgm}_{2} / m_{1}, \quad w_{2}=\left(a t-k m_{2} g\right) / m_{2} . \text { Here } t_{0}=\\ &=\mathrm{kgm}_{2}\left(m_{1}+m_{2}\right) / a m \text { . See Fig. 4. } \end{aligned}