All Problems

Kinematics

Problem 1.42

A particle moves along the plane trajectory \(y(x)\) with velocity \(v\) whose modulus is constant. Find the acceleration of the particle at the point \(x=0\) and the curvature radius of the trajectory at that point if the trajectory has the form (a) of a parabola \(y=a x^{2}\); (b) of an ellipse \((x / a)^{2}+(y / b)^{2}=1 ; a\) and \(b\) are constants here.

Reveal Answer
 (a) w=2av2,R=1/2a, (b) w=bv2/a2,R=a2/b . \text { (a) } w=2 a v^{2}, R=1 / 2 a, \text { (b) } w=b v^{2} / a^{2}, \quad R=a^{2} / b \text { . }