All Problems

Dynamics of a solid body

Problem 1.257

A spool with thread wound on it, of massm,\mathrm{mass} m, rests on a rough horizontal surface. Its moment of inertia relative to its own axis is equal to I=γmR2,I=\gamma m R^{2}, where γ\gamma is a numerical factor, and RR is the outside radius of the spool. The radius of the wound thread layer is equal to rr. The spool is pulled without sliding by the thread with a constant force FF directed at an angle α\alpha to the horizontal (Fig. 1.63). Find: (a) the projection of the acceleration vector of the spool axis on the xx -axis; (b) the work performed by the force F\mathbf{F} during the first tt seconds after the beginning of motion.

Reveal Answer
(a) wx=F(cosαr/R)m(1+γ)w_{x}=\frac{F(\cos \alpha-r / R)}{m(1+\gamma)} (b) A=F2t2(cosαr/R)22m(1+γ)A=\frac{F^{2} t^{2}(\cos \alpha-r / R)^{2}}{2 m(1+\gamma)}